Math 53 Discussion Problems Nov 19

1. Find the line integrals of \mathbf{F} over the given paths.
(a) $\mathbf{F}(x, y)=\left\langle x^{2},-y\right\rangle$, along $\mathbf{r}(t)=\left\langle t^{2}, t\right\rangle,-1 \leq t \leq 2$
(b) $\mathbf{F}(x, y)=\langle y,-x\rangle$, counterclockwise along the unit circle from $(1,0)$ to $(0,1)$
(c) $\mathbf{F}(x, y, z)=\langle-4 x y, 8 y, 2\rangle$, along $\mathbf{r}(t)=\left\langle t, t^{2}, 1\right\rangle, 0 \leq t \leq 2$
(d) $\mathbf{F}(x, y, z)=\langle x y, y z, x z\rangle$, along the path $C_{1} \cup C_{2}$ consisting of the line segment from $(0,0,0)$ to $(1,1,0)$ followed by the segment from $(1,1,0)$ to $(1,1,1)$
(e) $\mathbf{F}(x, y, z)=\left\langle e^{y z}, x z e^{y z}, x y e^{y z}\right\rangle$, along the line segment from $(1,0,1)$ to ($1, \frac{\pi}{2}, 0$) (Hint: use the fundamental theorem for line integrals)
2. Determine whether each of the following vector fields \mathbf{F} are conservative. For those that are, find a potential function f for \mathbf{F}.
(a) $\mathbf{F}(x, y)=\langle-y, x\rangle$
(b) $\mathbf{F}(x, y)=\left\langle\frac{2 x}{y}, \frac{1-x^{2}}{y^{2}}\right\rangle$
(c) $\mathbf{F}(x, y)=\left\langle y e^{x}, e^{x}+e^{y}\right\rangle$
(d) $\mathbf{F}(x, y, z)=\langle z+y, z, y+x\rangle$
(e) $\mathbf{F}(x, y, z)=\left\langle e^{x} \cos y,-e^{x} \sin y, z\right\rangle$
